1,专注于机械行业、专业、职业信息分享
2、大型装备的结构抗震与振动性能分析
大型装备在工作过程中通常会承受各种各样的动力载荷,比如,挖掘机挖掘过程中的瞬态冲击、工程机械在复杂施工条件下的运行等。同时,大型装备由于体积和质量都较大,往往都是直接固定在地面上。在装备运行的过程中,如果设计不好。将会有大量的振动和噪声产生。同时,由于大型装备通常需要连续不断的工作,还必须保证结构的抗震性能。(我们推荐你关注“机械工程师”公众号,第一时间掌握干货知识、行业信息)
3、大型装备的热及热应力分析
大型装备在设计、制造、运行过程中,热问题是比较严重的,这种温度分布直接影响到机械的结构力学性能。利用ANSYS的热分析模块和流体力学分析模块,可以全方位计算设备的温度场分布,再利用前面的结构分析功能,就可以计算在这种温度分布下,结构的所有力学特性(变形、应力、寿命等)。通过热分析与结构力学分析功能的直接耦合,以及ANSYS的单元生死特性,可以仿真焊接过程,可以得到焊接过程的温度分布、应力分布、结构变形以及焊接完成并冷却后结构的残余应力和残余变形,这对于确定焊接件的工作范围、优化焊接工艺等都具有直接的指导意义。
4、大型装备的减重优化
对于大型装备产品设计,经常给人的“傻、大、黑、粗”印象,可以利用CAE的优化设计功能 ( 形状优化设计和拓扑优化设计)来改变。拓扑优化设计用在新产品的概念设计阶段,根据产品或构件的工作条件(载荷、与其它部件的连接等),可以用此功能设计出最佳的产品拓扑外型;形状优化设计用于初始设计阶段或改型设计阶段,它根据用户的要求(如最大应力不能超过多少、寿命不能低于多少、尺寸不能小于或大于多少等)自动改变结构尺寸(如壁厚、倒角半径、孔的半径和位置等),使得所关心的量达到最佳值(如重量最轻、体积最小、应力分布最均匀、寿命最长等)。(我们推荐你关注“机械工程师”公众号,第一时间掌握干货知识、行业信息)
综合利用这两种优化设计手段,可以全面改观所设计的机械产品。
下面是对某挖掘机动臂进行减重优化设计的效果:
问题提出:对于挖掘机,动臂的机械性能关系到整机的工作能力,在保证动臂的机械性能的前提下,减少动臂的重量有助于降低生产成本,优化设计。
优化目标 :动臂重量
设计变量 :动臂结构几何尺寸(共计70)
性能约束:结构强度(应力)、结构刚度、几何相关性
优化结果:
动臂减重约40Kg,减重效果约为3%。
5、大型装备的运动及控制分析
大型装备是由大量的零部件装配而成。大型装备的正常工作需要设计到各个零部件之间的配合以及各种传动及控制。
首先进行了链轮在三种工况下的刚体运动学分析,获得链轮扭矩、轮齿啮合力和链环连接力,并对比计算了不同间隙配合下链轮的运转平稳性。
其次对链轮进行多柔体瞬态动力学分析,获得轮齿动态受力特性及应力应变情况,柔体分析的链窝应力与刚体分析的轮齿接触力分布是一致的。
最后进行了链轮链条接触非线性分析,对链轮5个尺寸参数在最大啮合力状态下进行优化设计,优化方案的最大应力降低4%,塑性应变降低41%。
6、制造工艺
制造工艺过程仿真:利用ANSYS的高度非线性瞬态动力分析模块可以仿真诸如铸造、锻造、挤压、辊压、切削等多种多样的成型过程。该模块所具有的显式动力分析技术、ALE流固耦合分析技术、结构温度耦合分析技术使得其在这些成型过程方面具有很高的计算效率和计算精度,从而很好地指导这些成型过程的工艺设计、优化工艺参数。
7、工业品再设计方案
再设计是一种全新的工程设计思想和方法。再设计就是让研发设计回归市场客户需求本源,重新审视原有的设计,以最自然的方式来探索设计的本质,效法自然。剔除以前由于各种原因或限制导致的不合理之处,或纠正以往对客户需求的错误认知或满足变差,重新设计核心零部件或整机,达到当前技术条件和认知水平下的最优。